http://m.casecurityhq.com 2023-11-30 11:28 來源:康耐視
工業(yè)領(lǐng)域的人工智能(AI)正在迅速嶄露頭角,工業(yè)AI可以幫助制造商借助設(shè)備監(jiān)控和預(yù)防性維護計劃來最大限度地延長正常運行時間,以及確定損失的產(chǎn)量和缺陷。其預(yù)測能力也可以用于創(chuàng)建學(xué)習(xí)和預(yù)測需求模型。
但與此同時,對于AI的應(yīng)用也伴隨著一些普遍的誤解。IBM《2022年全球AI采用指數(shù)》報告顯示,34%的調(diào)查受訪者(全球約2,550家公司)表示:缺乏AI專業(yè)知識阻礙了實施工作。因此,本文旨在澄清大眾對工業(yè)AI常見的四大誤解,以便大家能更清晰地理解AI技術(shù)在制造和物流行業(yè)的實際應(yīng)用和潛力。
誤解1:
AI術(shù)語可以互換且無足輕重
有人誤以為工業(yè)AI、機器學(xué)習(xí)和深度學(xué)習(xí)等術(shù)語是可以互換使用的。實際上,每個術(shù)語都有其獨特的含義和應(yīng)用范圍。工業(yè)AI是一個廣泛的范疇,包括多種技術(shù)術(shù)語。理解這些微妙差異是評估技術(shù)適用性的第一步。
下面整理了一些常見工業(yè)AI術(shù)語,幫助大家快速了解這項技術(shù)的不同形式、功能和可行性::
誤解2:
AI會取代人類的工作
AI的目標(biāo)不是取代人類,而是與人類合作,提高工作效率和質(zhì)量。AI能夠自動化繁瑣任務(wù),使員工能專注于更具創(chuàng)造性和戰(zhàn)略性的工作。這是一種高效而有益的工具,同時也能夠幫助解決勞動力短缺的問題。
因此,這項技術(shù)正逐漸被更廣泛地應(yīng)用于制造和物流行業(yè),以解決持續(xù)的勞動力短缺問題和其他長期存在的問題。AI與機器人的搭配使用,可以實現(xiàn)物體躲避和地面測繪等任務(wù),從而在各個設(shè)施中完成商品的配送。而AI與機器視覺系統(tǒng)的結(jié)合,則可以承擔(dān)必不可少的重復(fù)性質(zhì)量保證任務(wù),包括對部件進行缺失探測和檢查。
誤解3:
工業(yè)AI需要成千上萬的圖像和大型數(shù)據(jù)集
一些人錯誤地認(rèn)為,在工業(yè)領(lǐng)域應(yīng)用AI需要龐大的數(shù)據(jù)集和成千上萬的圖像。實際上,AI技術(shù)有許多不同的類型,其中一些應(yīng)用確實需要大型數(shù)據(jù)集,但并非所有情況都需要如此龐大的數(shù)據(jù)量。對于某些應(yīng)用,使用有限的數(shù)據(jù)集和經(jīng)驗也能夠做出有效的預(yù)測和決策。
康耐視公司推出的深度學(xué)習(xí)和邊緣學(xué)習(xí)技術(shù),就是上述兩種情況的代表:
深度學(xué)習(xí)以出色的復(fù)雜任務(wù)處理能力而著稱。這種技術(shù)適用于處理包含大量細(xì)節(jié)、變化顯著的大型圖像集任務(wù),同時也是復(fù)雜或高度定制化應(yīng)用的理想選擇。由于這些應(yīng)用涉及眾多細(xì)節(jié)變化,因此前期需要大量的圖像訓(xùn)練和模型執(zhí)行,才能為復(fù)雜的任務(wù)實現(xiàn)自動化。
邊緣學(xué)習(xí)專為易用性設(shè)計。它使用一組經(jīng)過預(yù)訓(xùn)練的算法在設(shè)備上或數(shù)據(jù)源的“邊緣”位置進行處理。通過預(yù)先將應(yīng)用需求知識嵌入到神經(jīng)網(wǎng)絡(luò)連接中的訓(xùn)練方式,消除大量計算負(fù)荷,因此無需GPU,僅需使用5到10個圖像,便可在數(shù)分鐘內(nèi)完成訓(xùn)練部署,從而快速擴展應(yīng)用規(guī)模,并輕松適應(yīng)變化。
誤解4:
部署AI解決方案需要專業(yè)科學(xué)家團隊
盡管AI的開發(fā)和設(shè)計需要一定的專業(yè)知識,但現(xiàn)代AI解決方案已變得更易于部署。特別是康耐視的邊緣學(xué)習(xí)技術(shù),它已經(jīng)大大簡化了部署過程??的鸵暤倪吘墝W(xué)習(xí)解決方案可以在智能相機內(nèi)部運行。這種智能相機配備了集成光源、自動對焦鏡頭以及一個強大的傳感器,這些部件共同發(fā)揮作用,提供精確的檢測功能。
操作人員無需具備部署方面的專業(yè)知識,即使是非視覺專家的人員也可以訓(xùn)練邊緣學(xué)習(xí)工具,并在幾分鐘內(nèi)生成準(zhǔn)確的結(jié)果。這使得邊緣學(xué)習(xí)成為適用于從機器視覺入門者到專家等所有人的可行自動化解決方案。通過消除對復(fù)雜基礎(chǔ)設(shè)施的依賴,并降低對專業(yè)知識的需求,康耐視的邊緣學(xué)習(xí)技術(shù)使得更多的人能夠利用AI技術(shù)來提高工作效率和質(zhì)量。
AI并非短暫的風(fēng)潮,也非僅適用于特定市場的專屬技術(shù),而是涉足廣泛領(lǐng)域,為工業(yè)提供多方面協(xié)助。隨著技術(shù)的不斷發(fā)展,AI變得更加便捷,經(jīng)過制造和物流行業(yè)的現(xiàn)場測試,為簡化質(zhì)量控制、提升產(chǎn)品可追溯性、及早識別生產(chǎn)缺陷提供支持。
通過澄清上述關(guān)于工業(yè)AI的常見誤解,希望您能更準(zhǔn)確地理解AI的實際應(yīng)用和潛力??的鸵暤腁I技術(shù),特別是邊緣學(xué)習(xí)解決方案,通過消除對復(fù)雜基礎(chǔ)設(shè)施和龐大數(shù)據(jù)集的依賴,以及降低對專業(yè)知識的需求,正以前所未有的方式助力企業(yè)提高檢測效率、降低生產(chǎn)成本并改進產(chǎn)品質(zhì)量。