http://m.casecurityhq.com 2021-12-29 14:55 來源:達摩院
12月28日,阿里巴巴達摩院(以下簡稱達摩院)發(fā)布了2022十大科技趨勢,從“范式重置”到“場景變革”再到“未來互聯(lián)”。 回顧2021年的科技趨勢預測,包含了量子計算、芯片開源、腦機接口、云原生、AI預訓練大模型等,虛實難分的“元宇宙”更是在年尾掀起一波熱潮。
通過比對可以發(fā)現(xiàn),所有尖端技術(shù)行至當前,都是有跡可循的。在達摩院的預判中,2022年科技發(fā)展將趨于硬核、多元。
達摩院表示,這份報告的意義不只在于預測結(jié)果正確與否,而在于它努力提供的一個獨特視角和同樣努力構(gòu)建的一種科學方法。這個視角代表著一群面向?qū)嶋H問題的研究者對未來的思考,他們確實感受到了技術(shù)演進的慣性;這個科學的方法則嘗試著讓這群人與社會各界者展開互動,各方對未來的感知依靠這個方法交融,讓整個社會都感受到技術(shù)演進的脈搏。
這是達摩院成立四年來第四次發(fā)布年度科技趨勢,通過“定量發(fā)散”與“定性收斂”結(jié)合的研究方法,過去四年間的770多萬篇論文和8.5萬份專利都進入量化模型,定量分析的權(quán)重顯著上升,覆蓋159個與信息科學交叉的領(lǐng)域,挖掘其中熱點及重點技術(shù)突破。與此同時,參與其中的科學家、創(chuàng)新者和政策研究者也越來越多,深度訪談近100位科學家,他們對已有狀況的分析、對可能未來的前瞻和基于事實的嚴謹討論,都讓研究人員的思路得以開闊但視線得以聚焦。
以下是達摩院2022十大科技趨勢:
趨勢一:AI for Science
人工智能成為科學家的新生產(chǎn)工具,催生科研新范式。
實驗科學和理論科學是數(shù)百年來科學界的兩大基礎(chǔ)范式,而人工智能正在催生新的科研范式。機器學習能夠處理多維、多模態(tài)的海量數(shù)據(jù),解決復雜場景下的科學難題,帶領(lǐng)科學探索抵達過去無法觸及的新領(lǐng)域。人工智能不僅將加速科研流程,還將幫助發(fā)現(xiàn)新的科學規(guī)律。預計未來三年,人工智能將在應用科學中得到普遍應用,在部分基礎(chǔ)科學中開始成為科學家的生產(chǎn)工具。
科學研究是在星辰大海里探索未知,科學發(fā)現(xiàn)漫長而偶然,重大突破仰賴大科學家的貢獻,如牛頓、愛因斯坦、楊振寧等,盡管眾多科學家不懈投入,科學發(fā)展的速度仍受到一定限制。
計算機科學改變科研的路徑是從下游逐漸走向上游。起初計算機主要用來做實驗數(shù)據(jù)的分析與歸納。后來科學計算改變了科學實驗的方式,人工智能結(jié)合高性能計算,在實驗成本與難度較高的領(lǐng)域開始用計算機進行實驗的模擬,驗證科學家的假設(shè),加速科研成果的產(chǎn)出,如核能實驗的數(shù)字反應堆,能夠降低實驗成本、提高安全性、減少核廢料產(chǎn)生。近年,人工智能被證明能做科學規(guī)律發(fā)現(xiàn),不僅在應用科學領(lǐng)域,也能在基礎(chǔ)科學領(lǐng)域發(fā)揮作用,如DeepMind使用人工智能來幫助證明或提出新的數(shù)學定理,輔助數(shù)學家形成對復雜數(shù)學的直覺。
人工智能將成為科學家繼計算機之后的新生產(chǎn)工具,一是帶來效率的顯著提升,人工智能將伴隨科研的全流程,從假設(shè)、實驗到歸納總結(jié),讓科學家不需要像過去一樣十年寒窗才能產(chǎn)出科學成果,而是能在一生中保持高產(chǎn);二是讓科學不再依賴少數(shù)天才,人工智能對科學研究產(chǎn)生猜想,讓科學家就其中有意義有價值的部分進行實驗與證明,讓更多人能夠參與到科學研究中。
人工智能在各科研領(lǐng)域中的應用節(jié)奏將有所區(qū)別,在數(shù)字化程度高、數(shù)據(jù)積累好、問題已經(jīng)被清晰定義的領(lǐng)域中將推進地更快,如生命科學領(lǐng)域,AlphaFold2運用生命科學積累的大量數(shù)據(jù),通過基因序列預測蛋白質(zhì)結(jié)構(gòu),對泛生命科學領(lǐng)域產(chǎn)生了深遠的影響。另一方面,在復雜性高、變量因子多的領(lǐng)域,人腦難以歸納總結(jié),機器學習可發(fā)揮優(yōu)勢在海量多維的數(shù)據(jù)中找到科學規(guī)律,如流體力學等。
人工智能與科研深度結(jié)合仍然需要解決三個挑戰(zhàn),一是人機交互問題,人工智能與科學家在科研流程上的協(xié)作機制與分工需要更加明確,形成緊密的互動關(guān)系;二是人工智能的可解釋性,科學家需要明確的因果關(guān)系來形成科學理論,人工智能需要更容易被理解,以建立科學與人工智能之間的信任關(guān)系;三是交叉學科人才,專業(yè)領(lǐng)域科學家與人工智能專家的相互理解程度低,彼此互相促進的障礙仍然較高。
我們預測在未來的三年內(nèi),人工智能技術(shù)在應用科學中將得到普遍應用,在部分基礎(chǔ)科學中開始成為研究工具。
趨勢二:大小模型協(xié)同進化
大模型參數(shù)競賽進入冷靜期,大小模型在云邊端協(xié)同進化。
超大規(guī)模預訓練模型是從弱人工智能向通用人工智能的突破性探索,解決了傳統(tǒng)深度學習的應用碎片化難題,但性能與能耗提升不成比例的效率問題限制了參數(shù)規(guī)模繼續(xù)擴張。人工智能研究將從大模型參數(shù)競賽走向大小模型的協(xié)同進化,大模型向邊、端的小模型輸出模型能力,小模型負責實際的推理與執(zhí)行,小模型再向大模型反饋算法與執(zhí)行成效,讓大模型的能力持續(xù)強化,形成有機循環(huán)的智能體系。
谷歌的BERT、Open AI的GPT-3、智源的悟道、達摩院的M6、AliceMind等大規(guī)模預訓練模型取得了巨大成果,大模型的性能有了飛躍性的提升,為下游的AI模型提供很好的基礎(chǔ)。然而大模型訓練對資源消耗過大,GPT-3訓練一次需要19萬度電,相當于開車從地球到月球往返一圈,參數(shù)數(shù)量增加所帶來的性能提升與消耗提升不成比例,讓大模型的效率受到挑戰(zhàn)。
大模型的規(guī)模發(fā)展將進入冷靜期,大模型與相關(guān)聯(lián)的小模型協(xié)同將是未來的發(fā)展方向。大模型沉淀的知識與認知推理能力向小模型輸出,小模型基于大模型的基礎(chǔ)疊加在垂直場景的感知、認知、決策、執(zhí)行能力,再將執(zhí)行的結(jié)果反饋給大模型,讓大模型的知識與能力持續(xù)進化,形成一套有機循環(huán)的智能系統(tǒng),參與者越多,受惠者也越多,同時模型進化的速度也越快。
新的智能體系帶來三個優(yōu)勢:一是讓小模型更容易獲取通用的知識與能力,在特定場景做極致優(yōu)化,提升了性能與效率;二是解決了過去大模型數(shù)據(jù)集過于單一的問題,小模型在真實場景回收的增量數(shù)據(jù),讓大模型有再進化的元素;三是全社會不需要重復訓練相似的大模型,模型可以被共享,讓算力與能源的使用效率最大化。
AI是數(shù)字經(jīng)濟時代的關(guān)鍵生產(chǎn)工具,給產(chǎn)業(yè)或?qū)W術(shù)的生產(chǎn)方式帶來顛覆式的改變,AI基礎(chǔ)模型讓AI的生產(chǎn)方式極大的簡化,可以更靈活的按需開發(fā)垂直領(lǐng)域的增量算法模型,提高模型生產(chǎn)的效率。
另一方面,復雜系統(tǒng)彼此間可以更有機的融合,如城市治理的場景,云是治理中樞大腦,邊端是各路攝像頭及邊緣設(shè)備,其中一路攝像頭將看到的數(shù)據(jù)進行學習,將學習的結(jié)果反饋給治理中樞,治理中樞再將學習的成果賦能給其他類似場景的攝像頭,形成不斷進化的系統(tǒng)。
新的智能體系需要克服三個挑戰(zhàn),一是大模型與知識和常識的融合,將以規(guī)則存在的知識利用起來,提升模型通用能力的同時也降低訓練所需的數(shù)據(jù)量,讓大模型從數(shù)據(jù)驅(qū)動走向知識與數(shù)據(jù)融合驅(qū)動;二是大小模型的協(xié)同機制,包含大模型的知識與能力向小模型降維遷移的有效性挑戰(zhàn)、小模型的小樣本學習向大模型的升維融合、不同維度數(shù)據(jù)的清洗與治理等;三是大模型的可解釋性與因果推理,隨著小模型對大模型的依賴上升,對大模型的信任決定是否能被廣泛的使用。
我們預測在未來的3年內(nèi),在個別領(lǐng)域?qū)⒁远嘀行牡拇笠?guī)模預訓練模型為AI基礎(chǔ)模型,對協(xié)同進化的智能系統(tǒng)進行試點探索。在未來的5年內(nèi),運用AI基礎(chǔ)模型成為AI模型生產(chǎn)的標準方式,極大幅度改變生產(chǎn)流程及生產(chǎn)所需的技能。
趨勢三:硅光芯片
光電融合兼具光子和電子優(yōu)勢,突破摩爾定律限制。
電子芯片的發(fā)展逼近摩爾定律極限,難以滿足高性能計算不斷增長的數(shù)據(jù)吞吐需求。硅光芯片用光子代替電子進行信息傳輸,可承載更多信息和傳輸更遠距離,具備高計算密度與低能耗的優(yōu)勢。隨著云計算與人工智能的大爆發(fā),硅光芯片迎來技術(shù)快速迭代與產(chǎn)業(yè)鏈高速發(fā)展。預計未來三年,硅光芯片將承載絕大部分大型數(shù)據(jù)中心內(nèi)的高速信息傳輸。
電子芯片集成技術(shù)進步趨于飽和,高性能計算對數(shù)據(jù)吞吐要求不斷增長,亟需技術(shù)突破。
光子芯片不同于電子芯片,技術(shù)上另辟蹊徑,用光子代替電子進行信息傳輸,可以承載更多的信息和傳輸更遠的距離。光子彼此間的干擾少、提供相較于電子芯片高兩個數(shù)量級的計算密度與低兩個數(shù)量級的能耗,相較于量子芯片,光子芯片不需要改變二進制的架構(gòu),能夠延續(xù)當前的計算機體系。光子芯片需要與成熟的電子芯片技術(shù)融合,運用電子芯片先進的制造工藝及模塊化技術(shù),結(jié)合光子和電子優(yōu)勢的硅光技術(shù)將是未來的主流形態(tài)。
硅光芯片的技術(shù)突破和快速迭代,以及高速增長的商業(yè)化需求,歸因于云計算與人工智能的大爆發(fā)。大型分布式計算、大數(shù)據(jù)分析、云原生應用讓數(shù)據(jù)中心內(nèi)的數(shù)據(jù)通信密度大幅提升,數(shù)據(jù)移動成為性能瓶頸。傳統(tǒng)光模塊成本過高,難以大規(guī)模應用,硅光芯片能夠在低成本的前提下有效提高數(shù)據(jù)中心內(nèi)集群之間、服務器之間、乃至于芯片之間的通信效率。
另一方面,據(jù)OpenAI統(tǒng)計,自2012年,每3.4個月人工智能的算力需求就翻倍,摩爾定律帶來的算力增長已無法完全滿足需求,硅光芯片更高計算密度與更低能耗的特性是極致算力的場景下的解決方案。
硅光芯片概念誕生約40年前。本世紀初,核心技術(shù)的突破奠定大規(guī)模商用的基礎(chǔ)??蓮V泛應用于數(shù)據(jù)中心內(nèi)外的光通信,逐步向光計算拓展。硅光目前核心挑戰(zhàn)來自產(chǎn)業(yè)鏈和工藝水平。硅光芯片的設(shè)計、量產(chǎn)、封裝等未形成標準化和規(guī)?;M而導致其在產(chǎn)能、成本、良率上的優(yōu)勢還未顯現(xiàn)。光計算領(lǐng)域的挑戰(zhàn)是精度低于電子芯片,進而限制其應用場景,集成度也需要提高來提升算力。
值得關(guān)注的是,光通信與光計算是相輔相成的,光通信中的光電轉(zhuǎn)換技術(shù)會在光計算中得到應用,光計算中要求的低損耗、高密度光子集成也會進一步促進光通信的發(fā)展,將來數(shù)據(jù)計算和傳輸有可能都在光域完成。
光電融合是未來芯片的發(fā)展趨勢,硅光子和硅電子芯片取長補短,充分發(fā)揮二者優(yōu)勢,促使算力的持續(xù)提升。未來3年,硅光芯片將支撐大型數(shù)據(jù)中心的高速信息傳輸;未來5-10年,以硅光芯片為基礎(chǔ)的光計算將逐步取代電子芯片的部分計算場景。
趨勢四:綠色能源 AI
人工智能助力大規(guī)模綠色能源消納,實現(xiàn)多能互補的電力體系。
風電、光伏等綠色能源近年來快速發(fā)展,也帶來了并網(wǎng)難、消納率低等問題,甚至出現(xiàn)了“棄風”、“棄光”等現(xiàn)象。核心原因在于綠色能源存在波動性、隨機性、反調(diào)峰等特征,大規(guī)模并網(wǎng)可能影響電網(wǎng)的安全穩(wěn)定運行。人工智能技術(shù)的應用,將有效提升電網(wǎng)等能源系統(tǒng)消納多樣化電源和協(xié)調(diào)多能源的能力,成為提升能源利用率和穩(wěn)定性的技術(shù)支撐,推動碳中和進程。預計未來三年,人工智能技術(shù)將幫助電力系統(tǒng)實現(xiàn)大規(guī)模綠色能源消納,實現(xiàn)電力系統(tǒng)的安全、高效、穩(wěn)定運行。
綠色能源大規(guī)模并網(wǎng)后,風電與光伏發(fā)電的波動性、隨機性、反調(diào)峰等特性將對電網(wǎng)的穩(wěn)定性和可控性造成沖擊,需要提高綠色能源并網(wǎng)、輸送、消納和安全運行的能力。根據(jù)中國國家能源局測算,中國統(tǒng)一可再生能源電力消納責任權(quán)重需要從2021年的28.7%提升至2030年的40%,風電、太陽能發(fā)電總裝機容量屆時將達到12億千瓦以上。
人工智能技術(shù)在發(fā)電功率的精準預測、電力優(yōu)化調(diào)度、電站性能評估、故障監(jiān)測和風險管理等方面將發(fā)揮不可替代的作用,帶來三大突破:
一是精準的功率預測,大數(shù)據(jù)和神經(jīng)網(wǎng)絡的算法應用,將提升氣象預報的準確性,減少新能源發(fā)電功率預測的誤差。特別是在遠距離、跨區(qū)域的綠能消納上,人工智能技術(shù)通過對電力天氣預報的預測和分析,調(diào)節(jié)發(fā)電功率,動態(tài)優(yōu)化電力系統(tǒng)發(fā)電策略,保障電網(wǎng)穩(wěn)定運行。
二是智能的調(diào)度控制,在電力調(diào)度端,深度學習、大數(shù)據(jù)驅(qū)動技術(shù)和機理仿真技術(shù)融合,將幫助電力調(diào)度系統(tǒng)持續(xù)優(yōu)化控制策略,增強風電、光伏、水電和儲能的多能源協(xié)調(diào)能力,實現(xiàn)多能互補,解決用電高峰期和低谷期電力輸出不平衡的問題。綠能的大規(guī)模并網(wǎng)對電網(wǎng)交直流混聯(lián)、源網(wǎng)荷儲交互的靈活重構(gòu)、運行優(yōu)化與決策也提出了更高要求。未來,人工智能技術(shù)將支撐我國綠色能源進入增量主體階段。
三是自動化的故障響應,基于大數(shù)據(jù)和深度學習做電網(wǎng)設(shè)備的實時監(jiān)測,有助于快速提取故障特征,大幅提升電力系統(tǒng)的故障識別能力和響應速度。隨著技術(shù)融合的加深,未來有望實現(xiàn)毫秒級的自動化預警監(jiān)測和控制。
綠色能源的大規(guī)模開發(fā)和利用已經(jīng)成為當今世界能源發(fā)展的主要方向。在高比例綠色能源并網(wǎng)的趨勢下,傳統(tǒng)電力系統(tǒng)難以應對綠色能源在大風、暴雨、雷電等天氣下發(fā)電功率的不確定性,以及復雜故障及時響應的應對能力。在運行監(jiān)測過程中,參數(shù)核驗和故障監(jiān)測仍需要大量的人工參與,故障特征提取困難,識別難度大。針對大規(guī)模綠色能源并網(wǎng)在穩(wěn)定、運行和規(guī)劃上面臨的各種挑戰(zhàn),以人工智能為主的新一代信息技術(shù)將對能源系統(tǒng)整體的高效穩(wěn)定運行提供技術(shù)保障和有力支撐。
人工智能與能源電力的深度融合,將推動大規(guī)模新能源發(fā)電、并網(wǎng)、輸送、消納和安全運行,完成對能源系統(tǒng)的升級改造。我們預計在未來的三年內(nèi),人工智能技術(shù)將幫助電力系統(tǒng)實現(xiàn)大規(guī)模綠能消納,能源供給在時間和空間維度上能夠互聯(lián)互濟,網(wǎng)源協(xié)調(diào)發(fā)展,彈性調(diào)度,實現(xiàn)電力系統(tǒng)的安全、高效、穩(wěn)定運行。
趨勢五:柔性感知機器人
機器人將兼具柔性和類人感知,可自適應完成多種任務。
傳統(tǒng)機器人依賴預編程,局限于大型生產(chǎn)線等結(jié)構(gòu)化場景。近年來,柔性機器人結(jié)合柔性電子、力感知與控制、人工智能技術(shù),獲得了力覺、視覺、聲音等感知能力,應對多任務的通用性與應對環(huán)境變化的自適應性大幅提升。機器人將從大規(guī)模、標準化的產(chǎn)線走向小規(guī)模、非標準化的場景。預計未來五年,柔性感知機器人將逐步替代傳統(tǒng)工業(yè)機器人,成為產(chǎn)線上的主力設(shè)備,并在服務機器人領(lǐng)域開始規(guī)模化應用。
機器人是技術(shù)的集大成者,在過去硬件、網(wǎng)絡、人工智能、云計算的融合發(fā)展下,技術(shù)成熟度有飛躍式的進度,在現(xiàn)有機器人基礎(chǔ)上,機器人也朝向多任務、自適應、協(xié)同化的路線發(fā)展。
柔性機器人是重要的突破代表,具有柔軟靈活、可編程、可伸縮等特征,結(jié)合柔性電子、力感知與控制等技術(shù),可適應多種不同的工作環(huán)境,并在不同的工作任務中進行調(diào)節(jié)。近年柔性機器人結(jié)合人工智能技術(shù),使得機器人具備感知能力,提升了機器人的通用性與自主性,降低對于預編程的依賴。
柔性感知機器人由于增加對環(huán)境的感知能力(包含力、視覺、聲音等),對任務的遷移能力增強,不再像傳統(tǒng)機器人需要窮舉各自可能性,并且可執(zhí)行依賴感知的任務(如醫(yī)療手術(shù)),拓展機器人的適用場景。另一個優(yōu)勢是任務中自適應能力,面向突發(fā)的環(huán)境變化能夠及時反應,準確的完成任務并避免問題發(fā)生與擴大。
在工業(yè)機器人領(lǐng)域,柔性感知機器人的出現(xiàn)讓機器人從大規(guī)模標準化的產(chǎn)線走向小規(guī)模非標的產(chǎn)線,原因一是柔性感知機器人在任務間的轉(zhuǎn)換能力增強,二是智能化后降低使用的門檻。在疫情影響下,招工難度不斷提升,柔性感知機器人有望補足用工缺口。
在服務機器人領(lǐng)域,柔性感知機器人極大改善人機交互的體驗與安全性,通過感知人的意圖,更柔軟地產(chǎn)生反應與交互,使得服務機器人可實現(xiàn)與人更近距離的交互。
柔性感知機器人的另一個發(fā)展方向是可移動性,與AGV(自動導航機器)結(jié)合,可在更大范圍中實現(xiàn)自主性與執(zhí)行多任務的彈性,也為機器間與人機協(xié)作創(chuàng)造更多可能。
柔性感知機器人需要克服三個關(guān)鍵挑戰(zhàn),一是機器人領(lǐng)域的智能水平受制于端側(cè)算力與小樣本學習的有效性,有賴于云端協(xié)同的突破;二是柔性機器人的精度受制于材料的剛性,執(zhí)行任務的準確性較低,有賴于可變材料的突破;三是柔性機器人的成本,有賴于工藝優(yōu)化及進一步通用化使得價格具備競爭力。
我們預測,未來5年內(nèi),柔性機器人將充分結(jié)合深度學習帶來的智能感知能力,能夠面向廣泛場景,逐步替代傳統(tǒng)工業(yè)機器人,成為產(chǎn)線上的主力設(shè)備。同時在服務機器人領(lǐng)域?qū)崿F(xiàn)商業(yè)化,在場景、體驗、成本方面具備優(yōu)勢,開始規(guī)?;膽谩?/p>
趨勢六:高精度醫(yī)療導航
人工智能與精準醫(yī)療深度融合,助力診療精度與效率提升。
傳統(tǒng)醫(yī)療依賴醫(yī)生經(jīng)驗,猶如人工尋路,效果參差不齊。人工智能與精準醫(yī)療深度融合,專家經(jīng)驗和新的輔助診斷技術(shù)有機結(jié)合,將成為臨床醫(yī)學的高精度導航系統(tǒng),為醫(yī)生提供自動指引,幫助醫(yī)療決策更快更準,實現(xiàn)重大疾病的可量化、可計算、可預測、可防治。預計未來三年,以人為中心的精準醫(yī)療將成為主要方向,人工智能將全面滲透在疾病預防和診療的各個環(huán)節(jié),成為疾病預防和診療的高精度導航協(xié)同。
傳統(tǒng)醫(yī)學方法在疾病的早篩、診斷、預后、治療中存在局限性,體現(xiàn)在確診準確率和診療效率、精度和效果等多方面。人工智能有望將醫(yī)療專家的經(jīng)驗和新的輔助診斷技術(shù)有機結(jié)合,在滿足臨床設(shè)計目標的基礎(chǔ)上不斷進化,憑借良好的人機交互能力,與醫(yī)生協(xié)同互信,真正成為醫(yī)生不可或缺的幫手。
人工智能技術(shù)已被證明可與基因檢測、靶向治療、免疫治療等新技術(shù)研究有效結(jié)合,改變了單純依賴醫(yī)生經(jīng)驗的診斷模式,以腫瘤為例:
在早篩和確診環(huán)節(jié),人工智能技術(shù)的應用從單一癌種走向全癌種的精準早篩。使用人工智能影像分析,醫(yī)生可找到癌細胞的蹤跡,改變傳統(tǒng)僅用肉眼觀測癌細胞的診斷模式。通過對樣本大數(shù)據(jù)做標志物的整合和分析,可實現(xiàn)大批量人群的自動化篩查。同時,人工智能還能自動生成多模態(tài)放射病理診斷和綜合評估報告,輔助醫(yī)生決策,提升癌癥早診率、治療率,降低惡性腫瘤的死亡率。根據(jù)英美國家的統(tǒng)計,使用人工智能技術(shù)做乳腺癌的早期篩查,陽性誤診率分別降低了5.7%(美國)和1.2%(英國)。
在治療環(huán)節(jié),人工智能技術(shù)將改善傳統(tǒng)癌癥治療方式,對腫瘤的處理不再是簡單的手術(shù)切除與否,而是可以明確是否復發(fā)、轉(zhuǎn)移,做到比肉眼看得更準,讓治療過程透明簡單?;谂R床數(shù)據(jù)的分析,人工智能在放療與化療的個體情況檢測和靶向用藥方面也將發(fā)揮關(guān)鍵作用。此外,人工智能將在腫瘤特異性免疫治療過程中,持續(xù)提升預測抗原的精度。特異性的細胞免疫治療是最具潛力的腫瘤治療方法,需要通過腫瘤特異性識別來做抗原預測,人工智能代替人工實驗來篩選海量的異常抗原肽和免疫細胞受體的空間結(jié)構(gòu),完成醫(yī)生無法完成的工作。
在預后環(huán)節(jié),人工智能技術(shù)改變了以往單純依賴專家經(jīng)驗的預測方式,實現(xiàn)了基于臨床數(shù)據(jù)指征的精確計算,能夠指引預后,降低風險。
高精度醫(yī)療導航的主要挑戰(zhàn)是標準化、規(guī)范性和可解釋性,可解釋性是建立人工智能和醫(yī)生的互信關(guān)系、推動產(chǎn)業(yè)化的先決條件。
未來三年,以人為中心的精準醫(yī)療將成為主要方向,全面滲透在疾病預防和診療的各個環(huán)節(jié),成為疾病預防和診療的高精度導航協(xié)同。而隨著因果推理的進一步發(fā)展,可解釋性有望實現(xiàn)突破,人工智能將為疾病的預防和早診早治提供有力的技術(shù)支撐。
趨勢七:全域隱私計算
破解數(shù)據(jù)保護和利用兩難,隱私計算走向全域數(shù)據(jù)保護。
數(shù)據(jù)安全保護與數(shù)據(jù)流通是數(shù)字時代的兩難問題,破解之道是隱私計算。過去受制于性能瓶頸、技術(shù)信任不足、標準不統(tǒng)一等問題,隱私計算尚只能在少量數(shù)據(jù)的場景下應用。隨著專用芯片、加密算法、白盒化、數(shù)據(jù)信托等技術(shù)融合發(fā)展,隱私計算有望跨越到海量數(shù)據(jù),數(shù)據(jù)源將擴展到全域,激發(fā)數(shù)字時代的新生產(chǎn)力。預計未來三年,全域隱私計算技術(shù)將在性能和可解釋性上有新的突破,或?qū)⒊霈F(xiàn)數(shù)據(jù)信托機構(gòu)提供基于隱私計算的數(shù)據(jù)共享服務。
在數(shù)字經(jīng)濟時代,數(shù)據(jù)成為核心生產(chǎn)要素,但與此同時,數(shù)據(jù)確權(quán)、數(shù)據(jù)法規(guī)、隱私保護意識、數(shù)據(jù)安全保障等因素,已成為跨組織間數(shù)據(jù)的共享與價值挖掘必須面對的課題。
隱私計算融合密碼學、人工智能、芯片設(shè)計等學科,以多方安全計算、差分隱私、可信計算為代表技術(shù),可在保證數(shù)據(jù)隱私不泄露的情況下實現(xiàn)計算分析,為跨組織的數(shù)據(jù)共享提供可行的模式。然而性能瓶頸、技術(shù)信任不足、標準不統(tǒng)一等問題,讓隱私計算尚只能在少量數(shù)據(jù)的場景下應用。
隱私計算將迎來三方面的突破,讓隱私計算能被大規(guī)模應用:一是性能與效率的跨越式提升,包含同態(tài)加密的算法突破,降低加解密的算力需求、軟硬一體的加速芯片,針對多方安全計算和聯(lián)邦學習場景進行性能優(yōu)化、更多第三方提供可信執(zhí)行環(huán)境(TEE)等。二是隱私計算技術(shù)的白盒化,提升技術(shù)的可解釋性進而強化信任度,通過開放集成能力,降低跨技術(shù)、跨模型的集成壁壘。三是數(shù)據(jù)信托機構(gòu)的出現(xiàn),作為可信第三方提供技術(shù)與運營,加速組織間的數(shù)據(jù)共享。
隱私計算的技術(shù)突破將推動數(shù)據(jù)計算由私域走向全域,分析的精度與深度也隨著可用的數(shù)據(jù)量增加而提升,在某些對數(shù)據(jù)量強依賴的領(lǐng)域效果更顯著,如商業(yè)分析、風險控制、學術(shù)研究、人工智能、精準營銷等。另一方面,全域隱私計算技術(shù)成熟后,有望成為數(shù)據(jù)共享的標準,數(shù)據(jù)流通的風險將大幅降低,數(shù)據(jù)所有者與數(shù)據(jù)保管者的責任邊界更加明確,安全程度也更加可衡量。
除了技術(shù)之外,隱私計算最大的不確定性來自于運營模式和合規(guī)標準。運營模式尚未形成完整的體系,讓數(shù)據(jù)提供方有足夠的誘因共享數(shù)據(jù),同時保障數(shù)據(jù)質(zhì)量讓數(shù)據(jù)使用方有意愿付出費用。就合規(guī)標準而言,隱私計算的合規(guī)紅線并不明確,讓技術(shù)發(fā)展存在較大的不確定性,技術(shù)與標準需要在發(fā)展過程中不斷地相互促進。
我們預測在三年內(nèi),全域隱私計算將在性能和可解釋性上有新的突破,并開始出現(xiàn)數(shù)據(jù)信托機構(gòu)提供基于隱私計算的數(shù)據(jù)共享服務。在未來的五到十年,全域隱私計算將改變現(xiàn)有的數(shù)據(jù)流通方式,新型業(yè)務也將在全域數(shù)據(jù)的基礎(chǔ)上誕生,提升全社會以數(shù)據(jù)為核心的生產(chǎn)效率。
趨勢八:星地計算
衛(wèi)星及地面一體化的通信與計算,促進空天地海的全面數(shù)字化。
基于地面網(wǎng)絡和計算的數(shù)字化服務局限在人口密集區(qū)域,深空、海洋、沙漠等無人區(qū)尚是服務的空白地帶。高低軌衛(wèi)星通信和地面移動通信將無縫連接,形成空天地海一體化立體網(wǎng)絡。由于算隨網(wǎng)動,星地計算將集成衛(wèi)星系統(tǒng)、空中網(wǎng)絡、地面通信和云計算,成為一種新興的計算架構(gòu),擴展數(shù)字化服務的空間。預計未來三年,低軌衛(wèi)星數(shù)量會迎來爆發(fā)式增長,衛(wèi)星及其地面系統(tǒng)將成為新型計算節(jié)點。
近年,全球連接及數(shù)字化的需求不斷增加,不再只是服務人口密集的區(qū)域,也延伸到深空、海洋、沙漠等無人區(qū),單靠地面網(wǎng)絡和計算已無法有效滿足需求。星地計算將衛(wèi)星系統(tǒng)、空中網(wǎng)絡、地面通信和云計算集成,成為一種新興的計算架構(gòu)。
空中網(wǎng)絡和地面通信系統(tǒng)無縫對接,以及技術(shù)能力不斷迭代升級,將為全球各類應用提供高性能、低成本、高可靠、無處不在的數(shù)字化連接,降低獲取連接的復雜度,并全面提升連接質(zhì)量。
算隨網(wǎng)動,泛在互聯(lián)網(wǎng)不同連接場景下將會產(chǎn)生新的算力需求,促進和催生更豐富多元的算力,在多種計算任務中發(fā)揮作用,從而滿足不同行業(yè)、不同場景下的數(shù)字化需求,全面提升各行各業(yè)的運行質(zhì)量。
星地計算通過空、天、地、海廣覆蓋的網(wǎng)絡連接實現(xiàn)全息泛在的智能高速寬帶通信和全域計算服務,促進萬物互聯(lián),將有效解決偏遠地區(qū)、航海航空的通信需求,低延時廣覆蓋的網(wǎng)絡將促進云網(wǎng)端的進一步融合,為各種極端場景帶來新型應用的可能。從產(chǎn)業(yè)視角而言,人與設(shè)備在線更容易,意味著更深更廣的數(shù)字化與智能化,將極大程度催化組織的全局智能。
星地計算在實現(xiàn)上仍面臨較多難題:一是空天地一體化通信問題。面向種類繁多、結(jié)構(gòu)復雜的泛在互聯(lián)網(wǎng)的各種業(yè)務需求,傳統(tǒng)衛(wèi)星通信的簡單技術(shù)體制、靜態(tài)處理機制、薄弱產(chǎn)業(yè)基礎(chǔ)都難以適用。二是星群計算問題。天上星間信息傳輸光變電和電變光的發(fā)熱問題還未被解決,制約了星間信息傳輸?shù)男省H切堑禺a(chǎn)業(yè)融合問題,地面硬件技術(shù)(如芯片)應用到衛(wèi)星上仍然面臨較大的環(huán)境適應問題(宇宙射線、空間干擾等),需要新的制造工藝突破。
我們預計在未來三年,低軌衛(wèi)星數(shù)量會迎來爆發(fā)式增長,與高軌衛(wèi)星共同組成衛(wèi)星互聯(lián)網(wǎng)。在未來五年,衛(wèi)星互聯(lián)網(wǎng)與地面網(wǎng)絡將無縫結(jié)合形成天地一體的泛在互聯(lián)網(wǎng),衛(wèi)星及其地面系統(tǒng)成為新型計算節(jié)點,在各類數(shù)字化場景中發(fā)揮作用。
趨勢九:云網(wǎng)端融合
云網(wǎng)端融合形成新計算體系,催生云上新物種。
新型網(wǎng)絡技術(shù)發(fā)展將推動云計算走向云網(wǎng)端融合的新計算體系,并實現(xiàn)云網(wǎng)端的專業(yè)分工:云將作為腦,負責集中計算與全局數(shù)據(jù)處理;網(wǎng)絡作為連接,將多種網(wǎng)絡形態(tài)通過云融合,形成低延時、廣覆蓋的一張網(wǎng);端作為交互界面,呈現(xiàn)多元形態(tài),可提供輕薄、長效、沉浸式的極致體驗。云網(wǎng)端融合將促進高精度工業(yè)仿真、實時工業(yè)質(zhì)檢、虛實融合空間等新型應用誕生。預計未來兩年,將有大量新型應用在云網(wǎng)端融合的新計算體系中運行。
云計算發(fā)展過去經(jīng)歷了兩個階段,第一階段是基礎(chǔ)設(shè)施云化,云計算取代傳統(tǒng)數(shù)據(jù)中心,算力與數(shù)據(jù)向云端遷移。第二階段是架構(gòu)云原生化,應用使用云原生的先進架構(gòu),走向容器化與無服務器化。在網(wǎng)絡連接技術(shù)高速發(fā)展的背景下,云計算開始走向第三個階段,云、網(wǎng)、端的協(xié)作關(guān)系發(fā)生變化,走向云網(wǎng)端融合的新體系架構(gòu)。
新的體系架構(gòu)下,云和端將專業(yè)分工。云作為體系中的“腦”,負責計算與數(shù)據(jù)處理,具備更好的計算效率、體系化的數(shù)據(jù)處理以及高精高效高覆蓋的人工智能。
網(wǎng)作為體系中的連接,光纖、5G、衛(wèi)星互聯(lián)網(wǎng)等技術(shù)通過云融合,形成低延時、廣覆蓋的一張網(wǎng),連接各種形態(tài)的云和端,讓云網(wǎng)端形成更有機的整體。
端作為體系中的交互界面,可大幅簡化非必要的計算和數(shù)據(jù)資源,更專注在用戶體驗上,如輕薄、長效、沉浸式體驗等,端的形態(tài)將更加多元,覆蓋各類場景下的交互需求。端云協(xié)同,實現(xiàn)在一種的端上完成多樣場景,而在多種的端上有一致的體驗。
云網(wǎng)端的融合協(xié)同將更高效地促進誕生更多新型應用:在云端,應用將不受過去裝置資源的限制,釋放更多可能性,如高精度的工業(yè)仿真;在網(wǎng)側(cè),分布式的算力將更促進更多低時延的邊緣計算應用,例如實時的工業(yè)質(zhì)檢;在端側(cè),云網(wǎng)端進行協(xié)同與交互,催生如元宇宙的虛擬世界。
云網(wǎng)端融合的體系需要克服兩個挑戰(zhàn),一是網(wǎng)絡技術(shù)的發(fā)展,由于在新的體系中網(wǎng)絡扮演著關(guān)鍵的角色,網(wǎng)絡質(zhì)量、成本與覆蓋都將成為體系的制約條件,新型網(wǎng)絡技術(shù)(如5G與衛(wèi)星互聯(lián)網(wǎng))需要不斷以應用需求為導向進行技術(shù)優(yōu)化迭代并且多種手段開展覆蓋建設(shè)。二是信息安全,數(shù)據(jù)在云上處理,對數(shù)據(jù)加密、數(shù)據(jù)治理、安全計算、隱私計算等安全技術(shù)的要求更高。
我們預測在未來的2年內(nèi),將有大量的應用場景在云網(wǎng)端的體系運行,伴隨著更多依云而生的新型設(shè)備,帶來更極致也更豐富的用戶體驗。
趨勢十:XR 互聯(lián)網(wǎng)
XR 眼鏡會成為重要交互界面,帶動下一代互聯(lián)網(wǎng)發(fā)展。
隨著端云協(xié)同計算、網(wǎng)絡通信、數(shù)字孿生等技術(shù)發(fā)展,以沉浸式體驗為核心的XR(未來虛實融合)互聯(lián)網(wǎng)將迎來爆發(fā)期。眼鏡有望成為新的人機交互界面,推動形成有別于平面互聯(lián)網(wǎng)的XR互聯(lián)網(wǎng),催生從元器件、設(shè)備、操作系統(tǒng)到應用的新產(chǎn)業(yè)生態(tài)。XR互聯(lián)網(wǎng)將重塑數(shù)字應用形態(tài),變革娛樂、社交、工作、購物、教育、醫(yī)療等場景交互方式。預計未來三年,外形與重量接近普通眼鏡的新一代XR眼鏡將產(chǎn)生,成為下一代互聯(lián)網(wǎng)的關(guān)鍵入口。
互聯(lián)網(wǎng)的發(fā)明,引領(lǐng)了數(shù)字時代的發(fā)展,互聯(lián)網(wǎng)的更新迭代,也對產(chǎn)業(yè)的格局產(chǎn)生巨大影響。移動互聯(lián)網(wǎng)讓手機取代個人電腦,操作系統(tǒng)和應用也產(chǎn)生了極大變化,而隨著VR、AR為代表的虛擬現(xiàn)實技術(shù)的產(chǎn)業(yè)化,下一代的XR互聯(lián)網(wǎng),也將對數(shù)字時代產(chǎn)生巨大影響。
XR互聯(lián)網(wǎng)將改變用戶的信息感知和獲取方式,最大的特征是是由二維平面走向三維立體的沉浸式體驗,信息會以最自然的方式被獲取,讓用戶所見即所得。
構(gòu)筑XR互聯(lián)網(wǎng)需要四大要素:硬件(如XR眼鏡等)、內(nèi)容(如娛樂、購物、社交等)、人工智能(如空間感知、數(shù)字孿生)、基礎(chǔ)設(shè)施(如5G、云計算等)。四大要素中硬件和內(nèi)容會率先發(fā)展,硬件是獲取數(shù)據(jù)的根本,也是互聯(lián)網(wǎng)平臺的載體。XR眼鏡會成為XR互聯(lián)網(wǎng)的重要入口,同時云網(wǎng)端協(xié)同將改變眼鏡的形態(tài),使其向著分體積更小、重量更輕、響應速度更快的方向發(fā)展。內(nèi)容則以娛樂社交和辦公場景為先,再逐漸發(fā)展至購物、教育、醫(yī)療等對遠距互動有一定需求的場景。
XR互聯(lián)網(wǎng)改變?nèi)伺c科技互動的方式,一是模擬真實世界的時空,解決真實世界遠距移動的問題,如遠程教育、遠程醫(yī)療、遠程辦公等,消除地理空間的限制,解決真實世界存在的問題。二是創(chuàng)造真實世界不存在的時空,解決真實世界不完美的問題,如游戲、社交等,滿足用戶重新建立自我認可的需求。XR互聯(lián)網(wǎng)也將重塑現(xiàn)有的產(chǎn)業(yè)結(jié)構(gòu),催生一批從元器件、設(shè)備、操作系統(tǒng)到應用的新產(chǎn)業(yè)。
XR互聯(lián)網(wǎng)當前還處于發(fā)展初期,技術(shù)上最大的挑戰(zhàn)是如何實現(xiàn)高度沉浸式體驗。一是AR、VR、MR眼鏡等終端在算力、分辨率、體積和功耗的問題有較大提升空間,使用者體驗仍有一定差距。二是當前的體驗技術(shù)更注重視覺和聽覺,對觸覺、嗅覺、味覺等體驗技術(shù)仍有巨大技術(shù)差距。最后是隱私風險,個體隱私數(shù)據(jù)作為支撐其持續(xù)運轉(zhuǎn)的底層資源需要不斷更新和擴張,數(shù)據(jù)資源合規(guī)收集、儲存與管理的規(guī)則尚待探討。
我們預計未來3年內(nèi)會產(chǎn)生新一代的眼鏡,融合AR與VR的技術(shù),利用端云協(xié)同計算、光學、透視等技術(shù)將外形與重量接近于普通眼鏡,XR眼鏡成為互聯(lián)網(wǎng)的關(guān)鍵入口,得到大范圍普及。