http://m.casecurityhq.com 2023-07-06 17:55 來源:ADI
摘要
工業(yè)4.0為遠距離實現(xiàn)邊緣智能帶來了曙光,而10BASE-T1L以太網(wǎng)的數(shù)據(jù)線供電(PoDL)功能、高數(shù)據(jù)傳輸速率以及與以太網(wǎng)協(xié)議兼容也為未來發(fā)展鋪平了道路。本文介紹如何在自動化和工業(yè)場景中集成新的10BASE-T1L以太網(wǎng)物理層標準,將控制器和用戶界面與端點(例如多個傳感器和執(zhí)行器)連接起來,所有器件均使用標準以太網(wǎng)接口進行雙向通信。
簡介
10BASE-T1L是針對工業(yè)連接的物理層標準。它使用標準雙絞線電纜,數(shù)據(jù)速率高達10 Mbps,電力傳輸距離長達1000米。低延遲和PoDL功能有助于實現(xiàn)對傳感器或執(zhí)行器等器件的遠程控制。本文介紹如何實現(xiàn)一個能夠同步控制兩個或更多步進電機的遠程主機系統(tǒng),借此展示遠距離實時通信的能力。
系統(tǒng)概述
圖1是系統(tǒng)級應(yīng)用的示意圖。在主機端,由ADIN1100和ADIN1200以太網(wǎng)PHY負責管理標準鏈路和10BASE-T1L鏈路之間的轉(zhuǎn)換,而在遠程端,控制器通過ADIN1110以太網(wǎng)MAC-PHY與鏈路接口,只需要一個SPI外設(shè)來交換數(shù)據(jù)和命令。準確的同步運動控制利用ADI Trinamic™ TMC5160步進電機控制器和驅(qū)動器來實現(xiàn),這些器件可生成六點斜坡用于定位,而無需在控制器上進行任何計算。選擇這些元器件還能降低對微控制器所用外設(shè)、計算能力和代碼大小的要求,從而支持使用更廣泛的商用產(chǎn)品。此外,在不超過預(yù)定功耗限制的情況下,整個遠程子系統(tǒng)可以直接由數(shù)據(jù)線供電;因此,只有媒介轉(zhuǎn)換器板需要提供本地電源。
圖1.系統(tǒng)概覽。
系統(tǒng)硬件
該系統(tǒng)由四個不同的板組成:
圖2.裝配好的EVAL-ADIN1110、EVAL-ADIN11X0EBZ和TMC5160擴展板。
軟件
軟件代碼可供下載:利用10Base-T1L以太網(wǎng)進行遠程運動控制 - 代碼。
為了保持代碼的輕量化并有效減少通信開銷,沒有在數(shù)據(jù)鏈路層之上實現(xiàn)標準通信協(xié)議。所有消息都是通過預(yù)定義固定格式的以太網(wǎng)幀的有效載荷字段進行交換。數(shù)據(jù)被組織成46字節(jié)的數(shù)據(jù)段,一個數(shù)據(jù)段由2字節(jié)的固定報頭和44字節(jié)的數(shù)據(jù)字段組成。報頭包括:一個8位器件類型字段,用于確定如何處理接收的數(shù)據(jù);以及一個8位器件ID字段,如果存在多個相同類型的器件,可以通過ID來選擇單個物理器件。
圖3.通信協(xié)議格式。
主機接口采用Python編寫,以確保與Windows和Linux主機兼容。以太網(wǎng)通信通過Scapy模塊進行管理,該模塊允許在堆棧的每一層(包括以太網(wǎng)數(shù)據(jù)鏈路)創(chuàng)建、發(fā)送、接收和操作數(shù)據(jù)包。協(xié)議中定義的每種器件都有一個相應(yīng)的類,其中包括用于存儲要交換的數(shù)據(jù)的屬性,以及一組可用于修改這些屬性而不必直接編輯變量的方法。例如,若要在運動控制器的速度模式下更改運動方向,可以使用已定義的方法“setDirectionCW()”和“setDirectionCCW()”,而不必手動為方向標志賦值0或1。每個類還包括一個“packSegment()”方法,該方法根據(jù)所考慮的設(shè)備器件的預(yù)定義格式,以字節(jié)數(shù)組的形式打包并返回與受控器件對應(yīng)的數(shù)據(jù)段。
固件利用ChibiOS環(huán)境以C語言編寫,其中包括實時操作系統(tǒng)(RTOS)、硬件抽象層(HAL)、外設(shè)驅(qū)動程序等工具,使代碼可以在相似的微控制器之間輕松移植。項目基于三個自定義模塊:
圖4.固件流程圖。
系統(tǒng)亮點和驗證
該項目旨在演示如何在自動化和工業(yè)場景中集成新的10BASE-T1L以太網(wǎng)物理層標準,將控制器和用戶界面與端點(例如多個傳感器和執(zhí)行器)連接起來。此應(yīng)用針對多個步進電機的遠程實時控制,廣泛用于工業(yè)中的低功耗自動化任務(wù),但也可用于輕型機器人和數(shù)控機床,例如臺式3D打印機、臺式銑床和其他類型的笛卡爾繪圖儀。此外,它還能擴展用于其他類型的執(zhí)行器和遠程控制器件。與具有類似用途的現(xiàn)有接口相比,其主要優(yōu)點包括:
我們對該系統(tǒng)進行了多次測量以評估其性能。所有用于與ADIN1110收發(fā)器和TMC5160控制器通信的外設(shè),都配置為使用標準硬件配置可達到的最大可能速度??紤]到微控制器具有80 MHz系統(tǒng)時鐘,對于運動控制器和ADIN1110收發(fā)器,SPI外設(shè)的數(shù)據(jù)速率分別設(shè)置為2.5 MHz和20 MHz。對于TMC5160,通過調(diào)整微控制器時鐘配置并向IC提供外部時鐘信號,SPI頻率可進一步提高至8 MHz,而對于ADIN1110,數(shù)據(jù)手冊規(guī)定的上限值為25 MHz。
對延遲進行評估,請求數(shù)據(jù)和收到應(yīng)答幀之間的總時間大約為4 ms(500個樣本的平均值,使用Wireshark協(xié)議分析儀計算數(shù)據(jù)請求和相應(yīng)應(yīng)答的時間戳之間的差值測得)。我們還進行了其他評估,以確定系統(tǒng)的哪些部分是導(dǎo)致此延遲的原因。結(jié)果表明,主要原因是RTOS的延時函數(shù),其預(yù)留的最小延遲為1 ms,用于設(shè)置TMC5160的讀寫操作間隔,而所需的延遲約為幾十納秒。這可以通過定義基于定時器的其他延遲函數(shù)來改進,使延遲間隔可以更短。
導(dǎo)致延遲的第二個原因是用于接收幀的Scapy函數(shù),調(diào)用此函數(shù)后至少需要3 ms的設(shè)置時間。在實際應(yīng)用中,直接使用操作系統(tǒng)的網(wǎng)絡(luò)適配器驅(qū)動程序來開發(fā)接口,而不借助Scapy等第三方工具也能有所改進。然而,這樣做也有一些缺點,包括會失去與不同操作系統(tǒng)的兼容性并增加代碼復(fù)雜度。
圖5.電源路徑的簡化方案。
通過切換GPIO并使用示波器測量高電平周期,可測得微控制器上實現(xiàn)回調(diào)的準確執(zhí)行時間。實測執(zhí)行時間包括讀取和解析接收到的幀以及向運動控制器發(fā)送命令的函數(shù)執(zhí)行時間。
第二組測量旨在評估使用PoDL為遠程器件供電時傳輸路徑上的功率損耗。我們用設(shè)置為不同電流的電子負載代替運動控制器擴展板進行測試,從0.1 A到0.5 A,步長為100 mA,以確定哪些元件對功率損耗有較大影響,進而確定如何改進設(shè)計以實現(xiàn)更高的額定電流。
圖6.每個無源元件的功率損耗與電流的關(guān)系。
結(jié)果表明,橋式整流器和肖特基二極管D2是造成損耗的主要因素,兩者均用于極性反接保護。兩個元件可以用基于MOSFET晶體管和理想二極管控制器的類似電路代替,以獲得更高的效率,同時也不會失去上述保護能力。在較高電流下,用于輸入和輸出電源濾波的耦合電感的直流電阻占主導(dǎo)地位,因此為了提高電流能力,還需使用具有更高額定電流的類似電感。
結(jié)論
工業(yè)4.0正在推動智能自動化的發(fā)展。ADI Trinamic技術(shù)與ADIN1100、ADIN1110、10BASE-T1L收發(fā)器配合使用,有助于控制器對遠至1700米的傳感器和執(zhí)行器實現(xiàn)遠程控制,而無需邊緣供電。通過可靠的遠程控制方法,可以輕松地在更遠距離實時控制步進電機,而不必犧牲任何性能或速度。這些系統(tǒng)解決方案將助力工業(yè)轉(zhuǎn)型,有望進一步縮短響應(yīng)時間,充分提高性能。